skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Narkthong, Nuntipat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Classification tasks on ultra-lightweight devices demand devices that are resource-constrained and deliver swift responses. Binary Vector Symbolic Architecture (VSA) is a promising approach due to its minimal memory requirements and fast execution times compared to traditional machine learning (ML) methods. Nonetheless, binary VSA's practicality is limited by its inferior inference performance and a design that prioritizes algorithmic over hardware optimization. This paper introduces UniVSA, a co-optimized binary VSA framework for both algorithm and hardware. UniVSA not only significantly enhances inference accuracy beyond current state-of-the-art binary VSA models but also reduces memory footprints. It incorporates novel, lightweight modules and design flow tailored for optimal hardware performance. Experimental results show that UniVSA surpasses traditional ML methods in terms of performance on resource-limited devices, achieving smaller memory usage, lower latency, reduced resource demand, and decreased power consumption. 
    more » « less
    Free, publicly-accessible full text available June 22, 2026